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Abstract
Fanconi anemia is a rare autosomal recessive disorder characterized
clinically by congenital abnormalities, progressive bone marrow failure,
and a predisposition to malignancy. FA cells are sensitive to DNA
cross-linking agents. Complementation analysis of FA cells using
somatic cell fusion has facilitated the identification of eight comple-
mentation groups, suggesting that FA is a genetically heterogeneous
disorder. Six genes (FANCA, FANCC, FANCD2, FANCE, FANGF,
FANCG) have been cloned so far. The majority of affected patients
belong to FA group A. Of the 32 unrelated Israeli patients with FA that
we studied, 6 carried the FANCC mutations and 15 the FANCA

mutations. Among the Jewish patients, ethnic-related mutations were
common. Recent cumulative evidence suggests that the FA proteins
are repair proteins. FANCC, FANCA and FANCG bind and interact in a
protein complex found in the cytoplasm and nucleus of normal cells.
FANCD2 exists in two isoforms; the long active form, FANCD2-L, is
absent from FA cells of all complementation groups. FANCD2 co-
localizes with BRCA1 in nuclear foci, probably as part of a large
genomic surveillance complex. Studies using FANCA and FANCC
knockout mice suggest that bone marrow precursors express
interferon-g hypersensitivity and show progressive apoptosis. The
definition of the molecular basis of FA in many affected families now
enables prenatal diagnosis.
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Fanconi anemia is a rare autosomal recessive disorder character-

ized clinically by congenital abnormalities, progressive bone

marrow failure, and a predisposition to malignancy [1]. FA cells

are sensitive to DNA cross-linking agents such as mitomycin C

and diepoxybutane. The disease has a worldwide prevalence of

1±5 per million and is found in all races and ethnic groups, with

an estimated heterozygous mutation carrier frequency of 0.3±1%

[2]. The identification of eight FA complementation groups and

the recent cloning of 6 of the FA genes [3±8] have led us to

considerable progress in FA research and better insight into the

pathogenesis of the disease. The aim of the present review is to

summarize the current understanding of the genetics and

molecular biology of FA.

Clinical course of FA

The clinical course of FA has been extensively reviewed [1]. The

common physical findings include abnormal skin pigmentation,

growth retardation, radial ray or other skeletal malformations,

microphthalmia, and renal or urinary tract malformations. The large

range of organ systems affected implicates the FA genes in a

general developmental process mandatory for normal human

embryogenesis. About 40% of patients have no major physical

anomalies.

The hematologic complications of FA include progressive bone

marrow failure that usually develops in the first decade of life. Often

thrombocytopenia or leukopenia appears before full pancytopenia.

Erythropoiesis is usually fetal-like, with macrocytosis as well as high

antigen and increased hemoglobin F levels.

Acute myeloblastic leukemia develops in at least 10±15% of

patients with FA, and myelodysplastic syndrome in about 5%

(average age 15 years). In addition, patients receiving androgen

therapy for bone marrow failure are prone to liver tumors (average

age 16 years). Later (average age 23 years), cancer of several organs,

including the skin, gastrointestinal tract, and gynecologic system,

may develop. The skin and gastrointestinal tumors are usually

squamous cell carcinomas. Before the advent of bone marrow

transplantation, many FA patients died of bone marrow failure even

before they could develop cancer, so the actuarial risk of cancer may

be even higher.

The clinical picture of FA is highly variable. Some patients present

with a relatively mild phenotype, normal skeletal development, and

subclinical hematopoietic abnormalities, surviving to the third or

fourth decade. Others have a more severe phenotype, with skeletal

abnormalities and early onset of bone marrow failure and cancer.

Diagnosis of FA

Cells from patients with FA exhibit increased spontaneous

chromosomal aberrations and hypersensitivity to DNA cross-linking

agents such as MMC and DEB. Similar spontaneous, chromosomal

FA = Fanconi anemia

MMC = mitomycin C

DEB = diepoxybutane
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changes are observed in other inherited chromosome instability

syndromes, such as Bloom's syndrome and ataxia telangiectasia,

but they are not DEB-induced. The DEB test is highly sensitive and

specific for FA, and serves as a diagnostic criterion. New diagnostic

approaches have resulted from the cloning of FA genes. FA cells

also have several other phenotypic abnormalities, such as defects in

cell cycle regulation and apoptosis.

Cloning of the FA genes

Complementation analysis of FA cells using somatic cell fusion has

facilitated the identification of eight complementation groups,

suggesting that FA is a genetically heterogeneous disorder [9,10].

This genetic heterogeneity has been largely verified by molecular

cloning of the FA genes, each complementation group representing

a distinct gene. Six genes have already been cloned: FANCA [3],

FANCC [4], FANCD2 [5], FANCE [6], FANGF [7], and FANCG [8]. Of

the first 100 FA patients classified by the European Fanconi Anemia

Research Program, the majority (n = 71) belonged to the FA-A group

[2] [Table 1]. Worldwide prevalence varies according to ethnic

background: for example, most FA patients in the Afrikaans-

speaking population of South Africa belong to group A, whereas

in the Ashkenazi-Jewish population (Eastern European origin),

group C is most frequent [2].

Fanconi anemia C gene

. FANCC gene and protein

The FANCC gene was the first FA gene to be cloned by functional

complementation of an Epstein-Barr virus-immortalized FA-C cell

line [4]. As predicted by the complementation test, the FANCC

cDNA corrects the MMC and DEB sensitivity of FA-C cell lines but

does not correct the MMC sensitivity of FA cells derived from other

FA groups. FANCC gene has been characterized [11] [Table 1]. The

FANCC protein shows no homology to any protein of known

function. It is primarily a soluble cytoplasmic protein, but a nuclear

complex of FANCA and FANCC and other FA proteins has also been

detected [2].

. FANCC mutations

Mutation analysis of the FANCC gene in western countries has

revealed a relatively small number of characteristic mutations [2]. In

most patients, the mutations are clustered in three regions of the

gene: exon 1, intron 4 and exon 14. The IVS4+4A>T mutation

predominates in patients of Ashkenazi Jewish ancestry, accounting

for more than 80% of cases of FA in this population [12]. The carrier

frequency of this mutant allele in a selected Jewish population was

determined to be 1.1% [13]. The 322delG mutation is found in

patients of North European ancestry, particularly Holland. The

relative prevalence of mutations in exon 14 and the high across-

species conservation of this exon indicate that the carboxy terminal

region of FANCC most likely contains a critical functional domain.

Augmented mRNA expression has been observed in the skeletal

system, suggesting a more specialized function of FANCC in bone

development [14]

. Genotype-phenotype analysis for FANCC

In general, patients with mutations in intron 4 (IVS4-4A>T) or exon

14 (R548X, L554P) have a significantly earlier onset of hematologic

abnormalities and poorer survival than patients with exon 1

mutations (322delG or Q13X,20). However, Japanese patients with

the same IVS4-4A>T mutation have a milder phenotype [15]. The

reason for this variability has not been elucidated. The molecular

basis of the milder phenotype in patients with exon 1 mutations

may be related to the observation that cell lines with the 322delG

mutation express a truncated isoform of FANCC, resulting in partial

correction of MMC sensitivity, whereas cell lines with intron 4

mutations lack this isoform [16].

Fanconi anemia A gene

. FANCA gene and protein

The FANCA gene was cloned by two techniques independently:

functional complementation of an EBV-immortalized FA-A cell line

[17] and positional strategy [2] [Table 1].

The FANCA protein contains a nuclear localization signal at its

N-terminus and a partial leucine zipper motif between amino acids

1069 and 1090. The importance of the leucine zipper region remains

unclear. Mutational screens have shown that the region of the

FANCA protein from amino acids 1046 to 1320, encoded by exons

32-39, appears to be critical to FANCA function. Multiple patient-

derived missense mutations have been identified in this region [18±

20].

. FANCA mutations

More than 100 private and semi-private mutations have been

identified so far in the FANCA gene [18±23]. A high proportion

(roughly one-third) are deletions, owing to the frequent occurrence

of alu repeats at the deletion breakpoints [24,25]. Somatic

mosaicism due to reversion of the pathogenic allele to wild-type

has been described in FANCA and FANCC [26].

. Genotype-phenotype analysis

Analysis of the FANCA mutations by the European Fanconi Anemia

Research Group suggested that complete loss of the FANCA protein

Molecular Biology

Table 1. The Fanconi anemia genes

Gene Pathogenic

mutations

Location Exons Protein

(aa)

Preval-

ence* (%)

FANCA >100 16q24.3 43 1455 71

FANCB ± ± ± ± 1

FANCC 10 9q22.3 14 558 7

FANCD1 ± ± ± ± 1

FANCD2 5 3q25.3 44 1451 1

FANCE 3 6p21.3 10 536 4

FANCF 6 1p15 1 374 2

FANCG 18 9p13 14 622 13

* Based on the first 100 FA patients classified by the European FA Research

Program.

aa = amino acids. EBV = Epstein-Barr virus
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is associated with a severe phenotype, whereas alteration of the

protein is associated with a milder phenotype, with later age at

onset of aplastic anemia [27].

Fanconi anemia G gene

The FANCG gene was recently cloned and found to be identical to

the previously cloned human XRCC9 gene [8] [Table 1]. The FANCG

protein is an orphan protein that contains an internal leucine zipper

as its only recognizable motif. More than 20 mutations have been

identified so far. All types of mutations have been found, with the

exception of large deletions. One missense mutation in a possible

leucine zipper motif may affect FANCG binding of FANCA [28]. A

relatively early occurrence of acute lymphoblastic leukemia has

been seen in patients in group G compared with patients in groups

A and C [2].

Fanconi anemia group E gene

The FANCE gene was recently cloned [6] [Table 1].

Fanconi anemia group F gene

The gene mutated in Fanconi anemia group F was identified by

complementation cloning. FANCF has no introns and encodes a

374 amino acid polypeptide with homology to prokaryotic RNA

binding protein ROM [7] [Table 1].

Fanconi anemia D2 gene

Complementation group D is heterogeneous, consisting of two

distinct genes, FANCD1 and FANCD2. Recently, FANCD2 was

positionally cloned [5] [Table 1], and found to have two isoforms. It

has no known functional domains but, unlike other known FA genes,

is highly conserved in Caenorhabditis elegans and Drosophilia.

The mutational spectrum in Israeli FA patients

We studied 32 unrelated Israeli patients with FA (22 Jewish and 10

Arab) [Table 2], who were either treated at the Hematology Clinic of

Schneider Children's Medical Center or referred to us from different

pediatric hematology units throughout the country. Six bore FANCC

mutations and 15 had FANCA mutations. Among the Jewish

patients, ethnic-related mutations were common: IVS4+4 in the

Ashkenazi Jews, 2172-2173insG and 4375delT in the Moroccan Jews

[30], 890-893del was found in the Jewish-Tunisian patients and

2474C>G in the Jewish-Indian patients. In seven of the nine Arab

patients the FA mutations were not identified, however neither the

FANCC nor the FANCA genes are apparently involved.

Cloning of the FA genes and pathogenesis of the

disease

The availability of FANCC knockout mice has provided some clues

to the pathogenesis of bone marrow failure. The study of FA genes

recently led to the development of a model of molecular

interactions.

Animal models of FA

Mice models with targeted disruptions of the FANCC and FANCA

genes have been developed. However, the resulting mutants exhibit

only part of the FA human phenotype. Cells derived from these

animals show the classic hypersensitivity to bifunctional DNA

cross-linking agents. Mice also display hypogonadism and reduced

fertility [29]. Hematopoiesis, which is typically compromised in FA

patients, appears to be unaffected in mice, but the repopulation

capacity of the FANCC mutant stem cells upon serial transplanta-

tion is reduced. In addition, although no peripheral blood

abnormalities were detected, an age-dependent decrease in

burst-forming unit-erythroid and colony-forming unit granulocyte

macrophage progenitors was found. In addition, the hematopoietic

progenitor cells revealed a distinct hypersensitivity to interferon

gamma [30]. Increased cell susceptibility to IFN-g leads to fas-

induced apoptosis, and the cells derived from the FANCC knockout

mice exhibited a high level of fas expression at a low INF-g

concentration [31]. It has recently been shown that functional

correction of FA-C cells with FANCC suppresses the expression of

INF-g-inducible genes [32]. This suggests that INF-g hypersensitiv-
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Table 2. FA Mutations in Israeli patients

Complemen-

tation Group

Mutation No. of

alleles involved

Origin

FANCC IVS4+4A>T 12 Ashkenazi-Jewish

FANCA 2574C>G 4 Indian-Jewish

2172-2173+G 14 Moroccan-Jewish

890-893del 3 Tunisian-Jewish

4257delT 3 Moroccan-Jewish

IVS42- 2GC, 2 Arab

Val229Ile 2 Arab

Del ex6-31 2 Arab

Total 42

Figure 1. FA pathway of genomic stability. The products of 5 FA genes ±

FANCA, FANCC, FANCE, FANCF, FANCG ± assemble into a nuclear

complex. Complex formation is essential to the attachment of a single ubiquitin

moiety to form D2-L (long form). Active D2-L binds to BRCA1 at the nuclear foci.

IFN-g = interferon gamma
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ity may be the major pathogenic mechanism underlying the

development of progressive aplastic anemia in patients with FA.

The relationship between this phenotype and the cellular response

to DNA cross-linking is still obscure.

Molecular interactions of FA proteins

Cumulative evidence over recent years shows that FA proteins

participate in a novel cellular pathway. FANCC, FANCA and FANCG

bind and interact in a protein complex found in the cytoplasm and

in the nucleus of normal cells [33,34].

The prospects for understanding the FA pathway have greatly

improved with the identification of FANCD2 [4]. Higura et al. [35]

suggested that the FANCD2 protein exists in two isoforms: the

primary translation product (short FANCD2-S) and a higher

molecular weight form (long FANCD2-L). The long isoform has a

single ubiquitin moiety attached to a highly conserved residue at

position 561. FANCD2-L is absent from FA cells of all complemen-

tation groups (except D1), but it reappears after correction of the FA

genetic defect.

In wild-type cells, FANCD2 and BRCA1, a DNA damage-response

agent and the major breast cancer susceptibility protein, have been

found together in the same nuclear foci. Although the manner in

which FA proteins intermingle with the BRCA1-associated proteins

is not clear, the FA protein is apparently a repair protein. It seems

that BRCA1 facilitates FA downstream reactions, possibly in

combination with other DNA repair proteins that are associated

with BRCA1 in a large genome surveillance complex [35].

FA like xeroderma pigmentosum and hereditary non-polyposis

colorectal cancer is, therefore, a caretaker-gene disease [2]

featuring genomic instability in combination with a strong

predisposition to cancer [Table 3].

Cloning of FA genes: implications for diagnosis

Although the DEB test is highly sensitive and specific for the

diagnosis of FA, it fails to identify heterozygote carriers of mutant

FA genes. Detection of the majority of the FA genes has allowed for

prenatal diagnosis. The identification of common mutant alleles in

each ethnic group contributes to rapid diagnosis.

Genotype/phenotype correlations are also important for FA

management. If a severe phenotype is diagnosed, patients may be

treated more aggressively with bone marrow transplantation or

gene therapy.

Cloning of FA genes: implication for therapy

Allogeneic BMT from a human leukocyte antigen-matched sibling

donor offers the only possibility of cure for the hematologic

manifestations of FA (aplasia or bone marrow dysplasia). Low doses

of cyclophosphamide and radiation must be used to avoid severe

toxicity due to the chemo- and radiosensitivity in patients with FA

[36]. Data from multiple institutions (over 150 patients) suggest an

overall 2 year survival rate of 66% [37,38]. Despite success in

treating FA aplasia by stem-cell replacement, some survivors show

late development of secondary malignancies, particularly of the

head and neck [37].

Most patients do not have an HLA-identical donor and are

dependent upon the identification of suitably matched non-sibling

relatives or unrelated donors. A study of 69 FA patients who

underwent BMT from alternative donors showed a 3 year survival

rate of 33%, graft failure being the most serious complication.

Preliminary results based on the addition of fludarabine to the

preparative regimen are encouraging [39].

An alternative in the absence of a histocompatible donor is the

retroviral transfer of a FA gene into the hematopoietic stem cell. In

current gene therapy trials, retroviral vectors expressing wild-type

FANCC or FANCA are used to transduce the peripheral blood

leukocytes of FA patients [2]. Once in the patient's bloodstream, the

gene-corrected stem cells presumably initiate and support profi-

cient hemopoiesis. A major obstacle to successful gene therapy is

the poor efficiency with which the rare hematopoietic stem cells are

transduced. To increase the number of these cells, many centers

have initiated programs for the collection and cryopreservation of

hematopoietic stem cells from FA patients before the onset of

aplasia. Subsequent difficulties may include unstable expression of

the transgene due to gene silencing and immunologic attack of the

transduced cell, which expresses a protein that the body might

identify as foreign.

Although useful, gene transfer studies, like BMT, cannot

ameliorate the developmental abnormalities or cancer risk in

non-hematopoietic tissues in patients with FA.

Conclusions and future trends

Cloning of the FA genes has opened a window to our understanding

of the molecular basis of Fanconi anemia. It is now known that the

FA complexes function upstream of FANCD2, which, in modified

form, acts together with the BRCA1 gene in the DNA-damage

response pathway. The FA core complex might act as a sensor of

DNA damage, leading to activation of FANCD2, which could be a

crucial effector molecule in the circuit. Nevertheless, many

questions remain unanswered: How does the FA core complex

respond to DNA damage? How does modification of the FANCD2

target this molecule to BRCA1-containing foci? What precisely does

FANCD2 do upon translocation to these sites?

Molecular Biology

Table 3. Caretaker-gene diseases

Disease No. of

suspected

genes

Molecular process

Ataxia telangiectasia 1 DNA damage response

Bloom syndrome 1 DNA unwinding

Werner syndrome 1 DNA unwinding

Xeroderma pigmentosum 7 Nucleotide excision/ transcription-

coupled repair

Hereditary non-polyposis

colorectal cancer

5 Mismatch repair

Hereditary breast/ovarian

cancer

3 DNA-damage response repair,

recombination, transcription

Fanconi anemia 7 ?
BMT = bone marrow transplant

HLA = human leukocyte antigen
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